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Macroreticular Resin Columns. 1. 
Modeling of Bead and Filament Packings 

J. MICHAEL BROWN and DAVID J. WILSON* 

DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL AND WATER RESOURCES ENGINEERING 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37235 

Abstract 

The diffusion of solutes into spherical beads and cylindrical filaments of 
macroreticular resin is modeled for the ideal and nonideal cases. These results 
are then used to develop mathematical models for the operation of continuous 
flow columns packed with such resins. Effects of design and operating parame- 
ters on the breakthrough curves of the columns are calculated. 

INTRODUCTION 

The use of macroreticular resins for the removal of trace organics from 
water and their recovery for analysis has become quite extensive. Some 
work has been done with support-bonded silicones ( I )  or Tenax GC 
polymer (2), but the bulk of the studies has been carried out with Rohm 
and Haas Amberlite XAD-series resins which are highly porous cross- 
linked polystyrene (XAD-1, 2, and 4) or acrylic ester (XAD-7 and 8) 
copolymers. These materials combine high capacity with an ease of regen- 
eration and durability that are lacked by activated carbon. 

An early analytical study was carried out by Burnham et al. (3); they 
investigated in detail the extraction of a variety of organics from water 
with XAD-2. Glaze and his co-workers (4) concentrated neutral organics 
from sewage treatment plant effluent on XAD-2, then eluted with ether 
for analysis. Junk et al. (5) sorbed organics from water for analysis using 
XAD-2 and XAD-4. Glaze and his collaborators (6)  proposed Total 
Organic Halogen as a water quality parameter; chlorinated organics are 

*To whom correspondence should be addressed. 
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1534 BROWN AND WILSON 

adsorbed from water onto XAD-2 or XAD-4, eluted, and analyzed micro- 
coulometrically. Huber and Becker (7) presented theory and experimental 
work on the enrichment of trace organics from liquids by displacement 
chromatography. Pietrzyk and Chu (8) used XAD copolymers in reversed 
phase gravity flow and high performance liquid chromatography (HPLC). 
They investigated distribution coefficients for a variety of organics in a 
number of XAD resins at different pH’s, and summarized the wide range 
of applications of macroreticular resins. Paschal; Bicknell, and 
Siebenmann (9) used XAD-2 resin to concentrate the herbicide atrazine 
for analysis by HPLC. Suzuki and his co-workers (10) extracted the 
herbicide CNP (2,4,6-trichlorophenyl-4’-nitrophenylether) from water 
with an XAD-2 column before analysis. Tateda and Fritz (11) used XAD-4 
to sorb organic contaminants from water in a microanalytical method. 

These resins have also been used for wastewater treatment. Kennedy 
(12) described the use of XAD-4 for the treatment of wastewaters from 
the manufacture of chlorinated pesticides ; leakage from the columns was 
less than that resulting when activated carbon was used, and the resin 
was easily regenerated with isopropanol. Spano et al. (13) described the 
treatment of wastewaters from TNT plants with XAD-2 and activated 
carbon. The XAD-2 was readily regenerated with acetone. Kim et al. 
(14) reviewed the use of these resins, as well as other techniques, for the 
adsorption of organic compounds from wastewaters. Farrier, Hines, and 
Wang (15) investigated the adsorption equilibria of benzoic acid and 
phenol on XAD-8, and modeled the phenol adsorption isotherm accurately 
with a three-parameter equation. Characteristics and applications of 
these resins are also discussed in literature available from Rohm and 
Haas (16). 

SPHERICAL BEAD PACKING-ANALYSIS 

The Amberlite polymeric adsorbents marketed by Rohm and Haas are 
in the form of spheres in the size range 20-60 mesh. We therefore first 
examine the diffusion of ideal and nonideal solutes into spheres from a 
large pool of liquid. These results are then used to construct a computa- 
tionally tractable model for simulating the operation of a continuous 
flow resin column. The methods used are rather similar to our earlier 
work on activated carbon columns (17, 18). 

Diffusion into a Sphereldeal Case 

cal geometry and an ideal solute is 
The diffusion equation in spherical coordinates for spherically symmetri- 
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(1) 

where c = concentration of solute in the sphere at (r ,  t )  
D = diffusion constant of solute in the sphere 
t = time 
r = distance from the center of the sphere 

We briefly summarize the well-known solution to this problem by separa- 
tion of variables. 

c(r, t )  = T( t )R(r )  (2) 
T D d  dR 
T - r 2 R  dr(12 %I - I  
_ - - -  

This yields T = exp ( - A t )  and 

$ ( r 2  $) + 5 I r Z R  = 0 

which is changed by the substitution 

u = rR 
into 

d2u A - - l - - -u=o dr2 D 
from which we see that 

(3) 

(4) 

The requirement that R not be singular at r = 0 dictates that A ,  = 0, and 
the observation that c(r, t )  = constant is a solution to  Eq. (1) then permits 
us to write 

We let rb be the radius of the sphere, and require as a boundary condi- 
tion that 

c(ra, 0 = c, 

This necessitates that 
(9) 
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2 

1 = An = rf) D 

and 
O0 B,, nnr 

c(r, t )  = c ,  + C - sin - exp 
n = l  * rb 

If we assume that initially c(r, 0) = 0,  r # rb, then 

The B,'s are then obtained by multiplying Eq. (12) by r sin (mr/rb) and 
integrating from 0 to rb to find 

2rb B,,, = (- 1)" - 
mn cm 

and 
( - 1 ) "  nnr - n2n2Dt 

sin - exp ( rb2 ) (14) 
n = l  n rb 

The total quantity of solute in the sphere is given by 

(1 5 )  

which on substitution from Eq. (14) and integration yields 

(16) 
- n2n2Dt 

3 

We note that dCldt is singular at t = 0; physically this is due to the infinite 
concentration gradient associated with our initial conditions. At large 
times the decay of the system toward equilibrium approaches 

as the term involving the lowest eigenvalue becomes dominant. We make 
use of results to be derived later to note that the rate of approach to 
equilibrium of a spherical bead adsorbent is 1.706 times that of a cylin- 
drical filament of the same radius. The radius of a filament must be 0.766 
times that of a sphere for the two to have the same time constant, all other 
factors being equal. 
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I538 BROWN AND WILSON 

+ S(PN - P O ) C N l  + ( N  - 1 ) Y P N - 1  - P N ) P ( P N - l  - P&-1 

+ s(PN - P N - l ) c N 1 }  (24) 
In Eq. (24), co is the concentration of solute in the sphere which is in 
equilibrium with the liquid bathing the sphere, and p o  is the chemical 
potential of the solute in the sphere at this concentration. We let c, be the 
concentration of solute in the liquid, and calculate co as follows: 

p(so1ute in solution) = p(so1ute in resin) (25) 

where y(c,) is the activity coefficient of the solute in solution and 1 / ( 1  - 
co/c,,,) is taken as the activity coefficient of the solute in the resin. Solving 
Eq. (26) for co yields 

where 

The total quantity of solute in a resin bead is then given by 

4 N  
C(t )  = 371 C (rn3 - r,3-&,(t) (29) 

n =  1 

N 4 
3 n = l  

= - n A r 3  C (3nZ - 3n + l)c,(t) 

and 
4 
3 C(o0) = - 71rb3c0 

We may estimate time constants for the decay to equilibrium from the 
slopes of plots of 

log, [ l  - C(t)/C(co)] versus t 

Spherical Packing in a Continuous Flow Column 

In attempting to use the model discussed in the preceding section for 
simulating the operation of a continuous flow column, we encounter the 
same difficulty noted in our earlier work on carbon columns (17, 18). 
The analysis is conceptually quite simple, but requires such large amounts 
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MACRORETICULAR RESIN COLUMNS. I I539 

of computer time that it is not useful for practical design work. In our 
activated carbon work we employed a lumped parameter approach in 
which diffusion into a pore was approximated as a one-step process 
having a single time constant. In the following treatment we improve 
this by approximating diffusion into a resin sphere as a two-step process; 
this yields approximations to the first two exponential terms in Eq. (16) 
if one is examining the ideal case. We proceed as follows. See Fig. 1. 

number of horizontal slabs used to represent the column 
volume of resin per unit volume of column, ~ 0 . 7 4  for close- 
packed spheres of a single size 
radius of column 
length of column 
r,/2 
1 c l M  
number of resin spheres per unit volume of column, r 3 x 
0.74/4nrb3 for close-packed uniform spheres 
volume of liquid per unit volume of column, = 1 - V, 
volumetric flow rate through the column 
influent solute concentration 
concentration of solute in the liquid phase in the nth slab 
concentration of solute in the outer shells of resin beads in 
the nth slab 
concentration of solute in the inner cores of resin beads in 
the nth slab 

pin = chemical potential of solute, i = 1, 2, 3;  n = 1, 2 ,..., M 

Q 

FIG. 1. Lumped parameter model of a macroreticular resin column with 
diffusion into a resin bead (or filament) modeled as a two-step process. 
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I540 BROWN AND WILSON 

We partition each resin bead into a spherical core of radius rb/2 and a 
single surrounding spherical shell; this corresponds to setting N = 2 in 
our previous analysis. We then carry out material balances on the solute 
in the three regions in each slab: the moving solution, the outer shells 
of the resin beads, and the inner cores of the resin beads. For the solution 
phase this yields 

where 

and 

+ (pin - PZn)[S(pln - ~ 2 n ) ~ l n  + S h n  - ~ 1 n ) ~ ~ n l l  (38)  
When n = 1 (the column slab which receives the influent), Eq. (36) is 
modified by replacing cln- , by cinfl ( t ) .  The composition of the column 
effluent is then given by c l M ( t ) .  Equations (36)-(38), Q(t) ,  and cinr,(t) 
then define the problem. Axial mixing is taken care of by the value of 
M ;  the larger this is, the less axial mixing is occurring. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



MACRORETICULAR RESIN COLUMNS. I 1541 

This system of differential equations was integrated by a predictor 
corrector method (19) which we have used previously for simulating 
activated carbon column (27, 18) and clarifier (20-22) operation. The 
algorithm is as follows: 

Starter: 

dY(0)  AX) = ~ ( 0 )  + AX - dx 
Predictor: 

dY y*[(n + l)Ax] = y[(n - l)Ax] +   AX  AX) dx 

(39) 

Corrector: 

The algorithm is simple, fast, and stable, provided that A x  (or, in our 
case, A t )  is not too large. 

FILAMENT PACKING-ANALYSIS 

One of the problems with bead-type packings is that the spheres must 
be large enough to permit ready flow of liquid through the column, yet 
small enough so that the time constant for equilibration between the 
sphere and the contacting solution is not too long. This time constant 
increases proportionally to the square of the sphere diameter, as seen 
above. For resins which can be formed as flexible monofilaments or fibers, 
this problem could be circumvented by using filaments of quite small 
diameter as column packing. The long filaments should pack in a fairly 
open structure, permitting high flow rates with low head loss; the small 
diameter of the filaments yields short time constants and rapid equili- 
bration, as shown below. 

In the following sections we first analyze the diffusion of an ideal solute 
into a cylindrical filament. We next examine the diffusion of a nonideal 
solute into a cylindrical filament by numerical methods; we then use these 
results to construct a mathematical model of the operation of a continuous 
flow column with filament packing. 

Diffusion into a Filament-Ideal Case 

Our starting point is the nonideal diffusion equation 
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I542 BROWN AND WILSON 

where c(r, t )  = the concentration of solute a distance r from the axis of 

p = p(r ,  t )  = chemical potential (per molecule) of the solute 
D = effective diffusion constant of solute in the filament 

the filament at time t (see Fig. 2) 

For the ideal case we have 

p = po + kTlog, c 

and in cylindrical coordinates Eq. (42) simplifies to 
(43) 

(44) 

This equation is solved by separation of variables; setting c(r ,  t )  = R(r)  
T(r) yields in the usual way 

T = exp(-At) (45) 

Equation (46) is Bessel's equation of order zero; we require the solution 
regular at  r = 0, so 

At r = r f ,  the radius of the filament, the concentration in the resin is 
always that at equilibrium with the surrounding solution, co. c(r, t )  = co 
is evidently a solution to Eq. (44), so we may write the general solution 
to Eq. (44) as 

FIG. 2. A segment of a cylindrical resin filament. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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When r = rf, c(r, t )  = c,, so we must have 

J,[  ( $ ) ‘ I 2  rf] = 0 

which requires that 
2 

,I = 1, = D k )  , m = 1,2,  ... 

(49) 

where xm is the mth root of J,(x). The unknown coefficients in Eq. (48) 
are determined by the requirement that, for an initially uncharged resin 
[c(r, 0) = 01, we must have 

m= 2 1 A , , , J , ~ )  = -co 

We multiply both sides of Eq. (51) by rJo(xKr/rf)  and integrate from 0 
to r f  in the usual way to obtain 

and 

The total quantity of solute adsorbed per unit length of filament at time 
t we denote by C ( t ) ;  it is given by 

C( t )  = 271 rc(r, t )  dr 1: (54) 

(56) 
= nrtco{l  - 4 “ 1  7 exp [ -D(xm,rf ) ’ t ] ]  

m = l  X m  

We estimate the time constant for the approach of the system to equilib- 
rium as the lowest eigenvalue of the system 

Ll = D t ) ’  (57) 

The first few values of the x, are 2.405, 5.520, 8.654, 11.79, and 14.93; 
as m becomes “large” (i.e., >3), xm - x,,,-~ -, n, which readily permits 
the generation of the higher eigenvalues. The eigenvalues are proportional 
to l/rf2, so the rate of approach to equilibrium increases rapidly with 
decreasing filament diameter. 
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I544 BROWN AND WILSON 

Diffusion into a Filament-Nonideal Case 

In Fig. 3 we see a cross-section of a filament partitioned into a set of 
concentric cylindrical shells. We return to the general, nonideal diffusion 
equation, and write it in cylindrical coordinates, 

We approximate this by examining the fluxes of solute through the inner 
and outer surfaces of the nth annular shell, which yields 

where S(x) = 0, x c 0 
= 1 ,  x s o  

rn = outer radius of the nth shell, = nAr 
p n  = chemical potential of the solute in the nth shell 

Substituting KAr for r, and rearranging Eq. (59) yields 

and 

FIG. 3. Partitioning of a resin filament into N annular regions. 
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MACRORETICULAR RESIN COLUMNS. I 1545 

f ( P N - 1  - pN)[s(pN-l - pNICN-1 + s(pN - p N - I ) C N I ( N  - 1)) 

(62) 
In Eq. (62) co is the concentration of solute in the resin in equilibrium 
with a concentration c, in the solution in contact with the resin. We 
calculate co from Eq. (27). 

The total quantity of solute in a unit length of resin filament is then 
given by 

N 
c(t) = ?r C (rn2 - r i - l ) cn( t )  

n =  I 
N 

= nArZ (2n - l)c,(t) 
t8=1 

Also 
C(c0) = ?rrf2co 

and time constants can be estimated from the slopes of plots of log, [C(co) - 
C(t)/C(m)] versus t .  Inspection of Eqs. (60)-(62) shows that the right- 
hand sides all have a factor 2DlAr’kT. For fixed N we therefore see that 
as rN (= r f )  increases, the rate of the system’s approach to equilibrium 
should decrease proportional to rN-2 ,  as found for the ideal case. 

Filament Packing in a Continuous Flow Column 

The approach outlined in the last section is not feasible for use in 
modeling the operation of continuous flow columns because of the exces- 
sive amounts of computer time required. We described earlier a closely 
analogous situation which arose in connection with the modeling of 
activated carbon columns (17, 18), which we simplified by using a lumped 
parameter approach that essentially assigns a single time constant to the 
diffusion of a solute into the pores of a particle of activated carbon. Here 
we elaborate this approach in such a way as to provide three time con- 
stants. 

The column is partitioned into a set of horizontal slabs, as was illus- 
trated earlier in Fig. 1. Each filament is then partitioned into three con- 
centric regions; N = 3 in Fig. 3. 

Let V,  = volume of resin per unit volume of column 
r, = radius of column 
I, = length of column 

Ar = r f / 3  
I, = length of filament per unit volume of column; I, = V,/rcrf2 
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I546 BROWN AND WILSON 

Vw = volume of liquid per unit volume of column, = 1 - V, 
Q(t)  = flow rate through the column 
co(t) = influent solute concentration 

A material balance on the liquid portion of the nth slab yields 

x [Shn - ~ 3 , n ) c , O  + S ( ~ 3 , n  - 1 * n ) ~ 3 , n I  (65)  
where c,,,~ = concentration of solute in the mth shell in the resin filaments 

in the nth slab 

For the filaments in the nth slab we assume that N = 3 and modify the 
notation in Eqs. (60)-(62) appropriately : 

rS(pi - + S ( p 3 , i  - cL i )C3 , i1  (72) 

This system of differential equations was integrated by the predictor 
Equations (65)-(72) completely define the problem. 

corrector method described by Eqs. (39)-(41). 
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RESULTS 

We first examined ideal and nonideal diffusion of solute into resin 
spheres and cylindrical filaments. In both cases the results indicated that 
a lumped two- or three-compartment model gave results which were in 
good agreement with the more exact treatments of the process. The details 
of these results are described elsewhere (23). 

The effects on the breakthrough curves (plots of effluent solute concen- 
tration versus volume of liquid passed through the column) of the diffusion 
constant for solute penetrating the resin are shown in Figs. 4 (spherical) 
and 5 (filament). As one would expect, increasing the diffusion constant 
increases the effluent volume required to produce significant solute break- 
through in both cases. 

The effect of bead or filament radius on the breakthrough curves is 
shown in Figs. 6 and 7, respectively. In either case the larger the radius 
the smaller the total area of the water-resin interface and the slower the 
diffusion into the resin, which results in decreasing effluent volumes 
required to produce breakthrough as radius increases. Increasing the 
influent flow rate causes column performance to deteriorate, as shown 
in Figs. 8 (bead) and 9 (filament). The rate of diffusional mass transfer 
into the resin becomes less and less able to keep up with the rate of trans- 
port of solute through the column by the moving liquid as the flow rate 
increases. 

2.4 XIO-' mg/rnl 1 

0 160 rnl 320 

"effluent 

FIG. 4. Breakthrough curves for bead-packed columns. Effect of solute-resin 
diffusion constant. rb = 0.05, r, = 1.0, I ,  = 20cm; Q = l.OmL/sec; cmaX = 

1.0, c' = mg/mL; D = 2 x (l), 4 x (2), 6 x (3) cm*/ 
S ~ C ;  V ,  = 0.14, M = 30, K = 20. 
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I548 BROWN AND WILSON 

0 I00 200 ml 300 

FIG. 5. Breakthrough curves for filament-packed columns. Effect of solute- 
resin diffusion constant. r, = 0.04, r, = 1.0, /, = 20 cm; Q = l.OmL/sec; 
cmax = 1.0, co = lO-'mg/mL; D = 2 x 

(3) cm2/sec; V, = 0.50, M = 30, K = 20. 
(l), 4 x (2), 6 x 

'effluent 

FIG. 6. Breakthrough curves for bead-packed columns. Effect of bead radius. 
rb = 0.05 (I), 0.04 (2), 0.035 (3), r, = 1.0, /, = 20 cm; Q = l.OmL/sec; 
cmax = 1.0, co = lo-' mg/mL; D = 6 x cm'/sec; V, = 0.74, M = 30, 

K = 20. 
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MACRORETICULAR RESIN COLUMNS. I I549 

Vet fluent 

FIG. 7. Breakthrough curves for filament-packed columns. Effect of filament 
radius. r, = 0.05 (l), 0.04 (2), 0.035 (3), rc = 1.0, I ,  = 20 cm; Q = 1.0 mL/sec; 
c,,, = 1.0, co = lo-' mg/mL; D = 6.0 x lov6 cm2/sec; V, = 0.50, M = 30, 

K = 20. 

Vef fluent 

FIG. 8. Breakthrough curves for bead-packed columns. Effect of influent flow 
rate. rb = 0.05, re = 1.0, I ,  = 20cm; Q = 2.0(1), 1.5(2), 1.0(3)mL/sec; 
cmaX = 1.0, co = lo-' mg/mL; D = 6 x cm2/sec; Vb = 0.74, M = 20, 

K = 20. 
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0 100 200ml 300 
Vef fluent 

FIG. 9. Breakthrough curves for filament-packed columns. Effect of influent 
flow rate. Y, = 0.035, rC = 1.0, ic = 20 cm; Q = 2.0 (l), 1.5 (2), 1.0 (3) mL/sec; 
c,,, = 1.0, c‘ = mg/mL; D = 6.0 x 10-6cmz/sec; V, = 0.50, M = 30, 

K = 20. 

Vet fluent 

FIG. 10. Breakthrough curves for bead-packed columns. Effect of M ,  the 
number of slabs into which the column is partitioned (theoretical transfer 
units). rb = 0.05, rC = 1.0, I ,  = 20cm; Q = 1.0 mL/sec; cmaX = 1.0, co = 

lo-’ mg/mL; D = 6 x cm’lsec; V ,  = 0.74, M = 10 (l), 20 (2), 30 (3), 
K = 20. 
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15 X10~4mg/ml r 

FIG. 1 1 .  Breakthrough curves for filament-packed columns. Effect of M ,  the 
number of slabs into which the column is partitioned (theoretical transfer 
units). rf = 0.035, Y, = 1.0, I ,  = 20 cm; Q = 1.0 mL/sec; cmaX = 1.0, co = 

lo-' mg/mL; D = 6 x cm*/sec; V, = 0.50, M = 10 (I), 20 (2),  30 (3), 
K = 20. 

1.0 - 

0 100 200ml 300 
Vaf f luent 

FIG. 12. Breakthrough curves for filament-packed columns. Effect of volume 
fraction resin. r, = 0.035, rc = 1.0, 1, = 20 cm; Q = 1.0 mL/sec; cmaX = 1.0, 
co = lo-' mg/mL; D = 6.0 x cm'lsec; V, = 0.30 (l), 0.40 (2), 0.50 (3), 

M = 30, K = 20. 
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Figures 10 and 1 1  show the effect of varying the number of horizontal 
slabs into which the column is partitioned. The mathematical model 
assumes complete mixing of the liquid in each slab, so decreasing the 
number of slabs permits one to model an increase in axial dispersion of 
the liquid in the column. Axial dispersion can also be handled by including 
a finite difference approximation to a second derivative term in Eq. (32) 
or Eq. (65). This approach, however, uses more computer time than 
decreasing the number of slabs used to represent the column, and it leads 
to mathematical instability of the algorithm if the axial dispersion constant 
is large. 

In columns packed with equal size spherical beads, the volume fraction 
resin is fixed in the vicinity of 0.74 unless the column is being operated 
in the fluidized bed mode. In filament-packed columns the volume fraction 
can in principle vary from 0 to 0.907. In Fig. 12 we see the effect of varying 
the volume fraction in filament-packed columns. The expected increase 
in effluent volume to breakthrough with increasing volume fraction resin 
is seen to occur. 

We conclude that the behavior of macroreticular resin columns modeled 
in the way outlined here is certainly in agreement with one's qualitative 
expectations based on physical intuition, and we would anticipate little 
difficulty selecting model parameters to match experimental data. This 
approach is well adapted to modeling the effects of influents having time- 
dependent flow rates and compositions, so that the response of the system 
to pulse shock' loadings can easily be studied. We note that columns 
packed with spheres absorb solute more rapidly than columns packed 
with the same volume of filaments of the same diameter-hardly surpris- 
ing since the water-resin interfacial area of the sphere-packed column is 
50% larger than that of the filament-packed column. However, if these 
resins could be prepared in thin filaments, one could obtain columns 
having short detention times which would not have the large hydraulic 
head losses bound to occur if spheres of similar diameter were used. 
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