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Macroreticular Resin Columns. |.
Modeling of Bead and Filament Packings

J. MICHAEL BROWN and DAVID J. WILSON*

DEPARTMENTS OF CHEMISTRY AND ENVIRONMENTAL AND WATER RESOURCES ENGINEERING
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37235

Abstract

The diffusion of solutes into spherical beads and cylindrical filaments of
macroreticular resin is modeled for the ideal and nonideal cases. These results
are then used to develop mathematical models for the operation of continuous
flow columns packed with such resins. Effects of design and operating parame-
ters on the breakthrough curves of the columns are calculated.

INTRODUCTION

The use of macroreticular resins for the removal of trace organics from
water and their recovery for analysis has become quite extensive. Some
work has been done with support-bonded silicones (I) or Tenax GC
polymer (2), but the bulk of the studies has been carried out with Rohm
and Haas Amberlite XAD-series resins which are highly porous cross-
linked polystyrene (XAD-1, 2, and 4) or acrylic ester (XAD-7 and 8)
copolymers. These materials combine high capacity with an ease of regen-
eration and durability that are lacked by activated carbon.

An early analytical study was carried out by Burnham et al. (3); they
investigated in detail the extraction of a variety of organics from water
with XAD-2. Glaze and his co-workers (4) concentrated neutral organics
from sewage treatment plant effluent on XAD-2, then eluted with ether
for analysis. Junk et al. (5) sorbed organics from water for analysis using
XAD-2 and XAD-4. Glaze and his collaborators (6) proposed Total
Organic Halogen as a water quality parameter; chlorinated organics are
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adsorbed from water onto XAD-2 or XAD-4, eluted, and analyzed micro-
coulometrically. Huber and Becker (7) presented theory and experimental
work on the enrichment of trace organics from liquids by displacement
chromatography. Pietrzyk and Chu (8) used XAD copolymers in reversed
phase gravity flow and high performance liquid chromatography (HPLC).
They investigated distribution coefficients for a variety of organics in a
number of XAD resins at different pH’s, and summarized the wide range
of applications of macroreticular resins. Paschal; Bicknell, and
Siebenmann (9) used XAD-2 resin to concentrate the herbicide atrazine
for analysis by HPLC. Suzuki and his co-workers (10) extracted the
herbicide CNP (2,4,6-trichlorophenyl-4’-nitrophenylether) from water
with an XAD-2 column before analysis. Tateda and Fritz (1) used XAD-4
to sorb organic contaminants from water in a microanalytical method.

These resins have also been used for wastewater treatment. Kennedy
(12) described the use of XAD-4 for the treatment of wastewaters from
the manufacture of chlorinated pesticides; leakage from the columns was
less than that resulting when activated carbon was used, and the resin
was easily regenerated with isopropanol. Spano et al. (13) described the
treatment of wastewaters from TNT plants with XAD-2 and activated
carbon. The XAD-2 was readily regenerated with acetone. Kim et al.
(14) reviewed the use of these resins, as well as other techniques, for the
adsorption of organic compounds from wastewaters. Farrier, Hines, and
Wang (/5) investigated the adsorption equilibria of benzoic acid and
phenol on XAD-8, and modeled the phenol adsorption isotherm accurately
with a three-parameter equation. Characteristics and applications of
these resins are also discussed in literature available from Rohm and
Haas (16).

SPHERICAL BEAD PACKING—ANALYSIS

The Amberlite polymeric adsorbents marketed by Rohm and Haas are
in the form of spheres in the size range 20-60 mesh. We therefore first
examine the diffusion of ideal and nonideal solutes into spheres from a
large pool of liquid. These results are then used to construct a computa-
tionally tractable model for simulating the operation of a continuous
flow resin column. The methods used are rather similar to our earlier
work on activated carbon columns (17, 18).

Diffusion into a Sphere—Ildeal Case

The diffusion equation in spherical coordinates for spherically symmetri-
cal geometry and an ideal solute is
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dc D af ,0c
P 5(’ 57) O
where ¢ = concentration of solute in the sphere at (r, ¢)
D = diffusion constant of solute in the sphere

t = time
r = distance from the center of the sphere

We briefly summarize the well-known solution to this problem by separa-
tion of variables.

e(r, ) = T(R(r) 2
T D d/,dR
ol G = ®
This yields T = exp (—At) and
d{ ,dR A,
dr(r dr>+BrR~0 (€))]
which is changed by the substitution
u=rR )
into
d*u A
%2— + B u=20 6)

from which we see that

A A
u=Alcos\/%r+Blsm\/5r @)

The requirement that R not be singular at r = 0 dictates that 4, = 0, and
the observation that ¢(r, t) = constant is a solution to Eq. (1) then permits
us to write

c(r,t) = c, + ;5;-4 sin (J% r) exp (— A1) )

We let r, be the radius of the sphere, and require as a boundary condi-
tion that

c(rp, 1) = € ®

sin(\/%r,,>=0

This necessitates that
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0
nm\?
A=l = (—) D (10)
s
and
© B . nur —n?n?Dt
cryt)y =cy + Y, —sin— exp|——F— an
n=1 ' 7y 7y

If we assume that initially ¢(r, 0) = O, r # r,, then
sin — = —c¢_ (12)

The B,’s are then obtained by multiplying Eq. (12) by r sin (mr/r,) and
integrating from 0 to r, to find

2r
W= (=D (13)
and
2 © (=™ —n’n’Dt
€l 1) = e + Lo Z EX 0™ exp (——”—”——) (14)
n= rb rb
The total quantity of solute in the sphere is given by
C(t) = 4n -[ r2e(r, 1) dr (15)
0
which on substitution from Eq. (14) and integration yields
4nrlc,, 6 1 —n’n?Dt
Cc@t) = ——3——[1 -2 nzl Py exp ( 7.2 >] (16)

We note that dC/dr is singular at # = 0; physically this is due to the infinite
concentration gradient associated with our initial conditions. At large
times the decay of the system toward equilibrinm approaches

) = ‘1”—’§-—[1 - 62 exp <‘“22D’>] a7

ry

as the term involving the lowest eigenvalue becomes dominant. We make
use of results to be derived later to note that the rate of approach to
equilibrium of a spherical bead adsorbent is 1.706 times that of a cylin-
drical filament of the same radius. The radius of a filament must be 0.766
times that of a sphere for the two to have the same time constant, all other
factors being equal.
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Diffusion into a Sphere—Nonideal Case

We take as our diffusion equation for the spherically symmetric nonideal

case
dc D 19o/(, ou
ot kT r? 6r<r car> (18)

where u(r, t) is the chemical potential of the solute (per molecule) at (r, t),
and k and T have their usual meaning.

Since the behavior of the solute in the resin is nonideal, Eq. (18) is
nonlinear, so we immediately resort to numerical methods. We partition
the sphere into N concentric shells of thickness 4r = r,/N, and perform
a material balance on the nth shell to obtain

4 3 5 L de,
3n(rn —rn—-l) dt

= 4nr 2 __1)_{(H'n+l — H'n)

" kT

Ar [S(u'n+1 - #n)cn+1 + S(ﬂn+1 - “n)cn]}

e, o BB 5 — s + S0 — -l
(19)
Sx)=0,x<0; SH»=1,xz0
We note that
r, = nAr, n=12.,N (20)
and that
r}—ri =ArGn® —3n+ 1) @

so that Eq. (19) rearranges to give
de, _ 3D
dt  kT(3n* — 3n + DAr
+ Sy = tns)eal + (1 = Doy — mISUa-1 = Ha)Ca—s
+ Sy — Ha-1)Cnl} (22)

In similar fashion the boundary equations for n = 1 and n = N are given
by

2 {nz(I»‘nH — uSnsr — Pn)Cnt 1

dc 3D
7d71 = W(uz — u)IS(uy — py)es + Sy — pa)ei] (23)

and



13:52 25 January 2011

Downl oaded At:

1538 BROWN AND WILSON

de 3D
_t—l—td = kT(3N2 — 3N + I)Arz {Nz(ﬂo - ﬂN)[S(MO - .uN)co

+ S(uy — 1%ey] + (N — D?(uy—y — pp)ISWn-1 — un)en-1

+ S(uy — un-1enl} (24)

In Eq. (24), c° is the concentration of solute in the sphere which is in
equilibrium with the liquid bathing the sphere, and u° is the chemical
potential of the solute in the sphere at this concentration. We let ¢, be the
concentration of solute in the liquid, and calculate ¢° as follows:

u(solute in solution) = u(solute in resin) (25)

0
¢
#Os + leoge [’)’(cs)cs] = #oR + leOge T _ 0/,
l—c¢ /cmax
where y(c,) is the activity coefficient of the solute in solution and 1/(1 —
¢®/cmay) is taken as the activity coefficient of the solute in the resin. Solving
Eq. (26) for ¢ yields

(26)

Kyc
0 __ S
© T T Koo @
where
K = exp [(1o* — po™)/kT] (28)
The total quantity of solute in a resin bead is then given by
4 < 3 3
CBy=37 3 0w = ri-e) 29)
n=1
4 N
= §7rAr3 Y. (3n% = 3n + Dey(2) (30)
n=1
and
4 30
C(0) = 3 C 3D

We may estimate time constants for the decay to equilibrium from the
slopes of plots of

log, [1 — C(2)/C(0)] versus ¢

Spherical Packing in a Continuous Flow Column

In attempting to use the model discussed in the preceding section for
simulating the operation of a continuous flow column, we encounter the
same difficulty noted in our earlier work on carbon columns (17, I8).
The analysis is conceptually quite simple, but requires such large amounts
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of computer time that it is not useful for practical design work. In our
activated carbon work we employed a lumped parameter approach in
which diffusion into a pore was approximated as a one-step process
having a single time constant. In the following treatment we improve
this by approximating diffusion into a resin sphere as a two-step process;
this yields approximations to the first two exponential terms in Eq. (16)

if one is examining the ideal case. We proceed as follows. See Fig. 1.
Let M = number of horizontal slabs used to represent the column
V, = volume of resin per unit volume of column, =0.74 for close-

packed spheres of a single size

r, = radius of column

L,
Ar
al,
N,

Ve
o)
Cint1 (1)

C3pn
C2n

Cin

Hin

length of column

ry/2

/M

number of resin spheres per unit volume of column, =~ 3 x
0.74/4nr,? for close-packed uniform spheres

volume of liquid per unit volume of column, =1 — F,
volumetric flow rate through the column

influent solute concentration

concentration of solute in the liquid phase in the nth slab
concentration of solute in the outer shells of resin beads in
the nth slab

concentration of solute in the inner cores of resin beads in
the nth slab

chemical potential of solute, i =1,2,3;n=1,2,... M

-

¥
3

=¥
=]

|
r
2
3
3

T

Q

1

s

v

4

v

1

v

i
1

M 4

18
w

-« - G- .-

FiG. 1. Lumped parameter model of a macroreticular resin column with
diffusion into a resin bead (or filament) modeled as a two-step process.
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We partition each resin bead into a spherical core of radius r,/2 and a
single surrounding spherical shell; this corresponds to setting N = 2 in
our previous analysis. We then carry out material balances on the solute
in the three regions in each slab: the moving solution, the outer shells
of the resin beads, and the inner cores of the resin beads. For the solution
phase this yields

47”'sz (H3n = Han)

= _ 2
AI w dt Q(t)(C3,, 1 CSn) Alcnrc Nr kT Ar
X [S(#Sn - HZ»)CnO + S(#Zn - “3»)"‘2”] (32)
Here
0 Co
Ha, = p + kT log, T= ¢ % (33)
where
Kc
0 _ 3n
c" l + KCSn/cmax (34)
and
Jn max
Rearrangement of Eq. (32) yields
dc3n = Q(C3n 1 c3n) _ 47Trb2NrD (#371 N #Zn)
dr nr,fALY, V.kT Ar
X [S(#Zin - #Zn)cno + S(“Zn - “Sn)CZn] (36)

The other equations needed are obtained by analogy with Egs. (23) and
(24) (with N = 2); they are

dey, 3D
= kTAr2 (Han — waIS(Hzy — H10)C2n + Sy — Hap)rnl (37)

dt
and
de,, 3D
o (s = 1S sy — 2 + Sty — i)

+ (ﬂ'ln - uZn)[S(“ln - #2n)c1n + S(HZn - ﬂln)cln]} (38)

When n = 1 (the column slab which receives the influent), Eq. (36) is
modified by replacing c3,_; by cinei (2). The composition of the column
effluent is then given by csy (). Equations (36)-(38), Q(z), and ciy (1)
then define the problem. Axial mixing is taken care of by the value of
M the larger this is, the less axial mixing is occurring.
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This system of differential equations was integrated by a predictor
corrector method (19) which we have used previously for simulating
activated carbon column (/7, 18) and clarifier (20-22) operation. The
algorithm is as follows:

Starter:
y¥(Ax) = y(0) + Ax d;_g?) 39
Predictor:
y¥(n + DAx] = 3{(n — DAx] + 2Ax %(nAx) (40)
Corrector:

M(n + DAx] = y(nAx) + %E{Z—fc (nAx) + %y;* [(n + l)Ax]} (C3))

The algorithm is simple, fast, and stable, provided that Ax (or, in our
case, 4t) is not too large.

FILAMENT PACKING—ANALYSIS

One of the problems with bead-type packings is that the spheres must
be large enough to permit ready flow of liquid through the column, yet
small enough so that the time constant for equilibration between the
sphere and the contacting solution is not too long. This time constant
increases proportionally to the square of the sphere diameter, as seen
above. For resins which can be formed as flexible monofilaments or fibers,
this problem could be circumvented by using filaments of quite small
diameter as column packing. The long filaments should pack in a fairly
open structure, permitting high flow rates with low head loss; the small
diameter of the filaments yields short time constants and rapid equili-
bration, as shown below.

In the following sections we first analyze the diffusion of an ideal solute
into a cylindrical filament. We next examine the diffusion of a nonideal
solute into a cylindrical filament by numerical methods; we then use these
results to construct a mathematical model of the operation of a continuous
flow column with filament packing.

Diffusion into a Filament—Ideal Case

Our starting point is the nonideal diffusion equation
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(r 1) = V(cVu) 42)

where c(r, t) = the concentration of solute a distance r from the axis of
the filament at time ¢ (see Fig. 2)
u = u(r, t) = chemical potential (per molecule) of the solute
D = effective diffusion constant of solute in the filament

For the ideal case we have

p= o + kTlog,c (43)
and in cylindrical coordinates Eq. (42) simplifies to
dc dc
Friaie 6r< 5) “44)

This equation is solved by separation of variables; setting c(r, 1) = R(r)
T(¢) yields in the usual way

T = exp(—4t) (45)
1 d{ dR A
r dr( dr> tp R (“46)

Equation (46) is Bessel’s equation of order zero; we require the solution

regular at r = 0, so
l 1/2
R = J"[(T)) r:l “n

At r = r;, the radius of the filament, the concentration in the resin is
always that at equilibrium with the surrounding solution, c,. ¢(r, 1) = ¢
is evidently a solution to Eq. (44), so we may write the general solution
to Eq. (44) as

c(ryt) =co + 3, AAJOII<%>1/2 r] exp (—At) (48)
A

—t

-

FiG. 2. A segment of a cylindrical resin filament.
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When r = r, ¢(r, t) = ¢o, SO we must have

Jo[(%>”2 r,] =0 “9)

x 2

A=A, = D(—'5'> , m=1,2,.. (50)
'y

where x,, is the mth root of Jy(x). The unknown coefficients in Eq. (48)

are determined by the requirement that, for an initially uncharged resin

[c(r, 0) = 0], we must have

$ AJ<"r—f’) -~ (s1)

which requires that

m=1

We multiply both sides of Eq. (51) by rJo(xgr/r,) and integrate from 0
to r, in the usual way to obtain

—2¢o

A= xgJ 1 (xg)

(52)

and
Jo(xur/7;) exp [— D(x,,/r )1}
mel(xm)
The total quantity of solute adsorbed per unit length of filament at time
t we denote by C(¢); it is given by

c(r, t) = ¢y — 2¢, i (53)
m=1

C(t) = 2n Jrf re(r, t) dr 54
0

B ] e

= nrfzco{l -4 ";S;l ;1—5 exp [—D(xm/rf)zt]} (56)

We estimate the time constant for the approach of the system to equilib-
rium as the lowest eigenvalue of the system

2
2 = D(-"—‘) (57)
I's

The first few values of the x,, are 2.405, 5.520, 8.654, 11.79, and 14.93;
as m becomes “large” (i.e., >3), X,, — X,—; — 7, Which readily permits
the generation of the higher eigenvalues. The eigenvalues are proportional
to 1/r,?, so the rate of approach to equilibrium increases rapidly with
decreasing filament diameter.
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Diffusion into a Filament—Nonideal Case

In Fig. 3 we see a cross-section of a filament partitioned into a set of
concentric cylindrical shells. We return to the general, nonideal diffusion
equation, and write it in cylindrical coordinates,

e 212, -

rc
or

We approximate this by examining the fluxes of solute through the inner
and outer surfaces of the nth annular shell, which yields

2

de,
7!(",, - r:—l) E

nD n — Uy
= 2ﬁ{<li+_lAr—>[S(ﬂn+l - “n)cn+1 + S(ﬂn - lun+1)cn]rn

+ (’i"—'lfr_i)[s(un-l = BaCamy + Sy — .un-l)cn]rn—l} (9)

where S(x) = 0, x<0
=1, x<0
r, = outer radius of the nth shell, = nAr
U, = chemical potential of the solute in the nth shell

Substituting XAr for ri and rearranging Eq. (59) yields

dc, 2D
_67; = m {(#n+1 - #n)[s(ﬂn-f-l - ”n)cn+l + S(“n - #n+1)cn]n

+ (“n—l - ”n)[S(#n—l - I‘l'n)cn-l + S(#n - “n—l)cn](n - 1)} (60)
The boundary conditions are given by

d 2D
T = Tl = m)ISG, = me; + Sy — well  (61)

and

FiG. 3. Partitioning of a resin filament into N annular regions.
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de 2D
7 = v = Da7ar 0 — mISE — m)e® + S(uy — 1)eyIN

+ (y-1 — uISn-1 — un)en—y + Sy — py-Den)V — 1)}
(62)
In Eq. (62) c° is the concentration of solute in the resin in equilibrium
with a concentration ¢, in the solution in contact with the resin. We
calculate ¢° from Eq. (27).
The total quantity of solute in a unit length of resin filament is then

given by
N

Ct)y=mn Y, (r? = ri_Det)
n=1
= nAr? % @2n — De,(t) (63)
n=1
Also
C(0) = nr2c® (64

and time constants can be estimated from the slopes of plots of log, [C(c0) —
C(t)/C(c0)] versus t. Inspection of Egs. (60)-(62) shows that the right-
hand sides all have a factor 2D/Ar?kT. For fixed N we therefore see that
as ry (= ry) increases, the rate of the system’s approach to equilibrium
should decrease proportional to ry ™2, as found for the ideal case.

Filament Packing in a Continuous Flow Column

The approach outlined in the last section is not feasible for use in
modeling the operation of continuous flow columns because of the exces-
sive amounts of computer time required. We described earlier a closely
analogous situation which arose in connection with the modeling of
activated carbon columns (17, 18), which we simplified by using a lumped
parameter approach that essentially assigns a single time constant to the
diffusion of a solute into the pores of a particle of activated carbon. Here
we elaborate this approach in such a way as to provide three time con-
stants.

The column is partitioned into a set of horizontal slabs, as was illus-
trated earlier in Fig. 1. Each filament is then partitioned into three con-
centric regions; N = 3 in Fig. 3.

Let V, = volume of resin per unit volume of column

r. = radius of column

I, = length of column
Ar = rg/3

I, = length of filament per unit volume of column; /, = V,/nr;?
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V, = volume of liquid per unit volume of column, =1 -V,
Q(t) = flow rate through the column
¢®(¢) = influent solute concentration

A material balance on the liquid portion of the nth slab yields

de nr 2ALLD
2 el — ¢ - ar’ —
Alcnrc Vw ¢ Q(t)(cn—— 1 Cn) ArkT 27"'](,[1” :u3,n)
X [S(“n - ﬂ3,n)cno + S(.“S,n - ﬂn)CS,n] (65)

where ¢,, , = concentration of solute in the mth shell in the resin filaments
in the nth slab

0 Kcn

¢ = Tl(c,,/c;a—, (assume y = 1 in Eq. 27) (66)

o € 7
u, = u + kT log, [ = ¢ (©7)
3m ‘1 - C3n/cmax

For the filaments in the nth slab we assume that ¥ = 3 and modify the
notation in Eqs. (60)-(62) appropriately:

At e D Gy = s ISty — a0 + Sz = B,

+ (Han — B3 wlSU2m — B3 n)Com + S, — H2w)esa12}  (69)
L 2 (s = 12 Sty — 2 )2+ Sy — by e 2

+ (Wi = B2 SUp — Ha )i + SWam — Bia)eznl  (70)

dcy, 2D
d; = ArlkT {(#Z,n - #l,n)[S(#Z,n - #l,n)CZ,n + S(u'l,n - ﬂZ,n)cl,n]}

(7D
Equation (65) must be modified slightly when n = 1 (the top of the
column); it becomes

de nr2AlLLD
Algrr 2V, b= Q) eian — €0) = —e— 270 = H3.1)

x [S(uy — pa,)e:° + Sz — s ] (72)

Equations (65)-(72) completely define the problem.
This system of differential equations was integrated by the predictor
corrector method described by Egs. (39)—(41).
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RESULTS

We first examined ideal and nonideal diffusion of solute into resin
spheres and cylindrical filaments. In both cases the results indicated that
a lumped two- or three-compartment model gave results which were in
good agreement with the more exact treatments of the process. The details
of these results are described elsewhere (23).

The effects on the breakthrough curves (plots of effluent solute concen-
tration versus volume of liquid passed through the column) of the diffusion
constant for solute penetrating the resin are shown in Figs. 4 (spherical)
and 5 (filament). As one would expect, increasing the diffusion constant
increases the effluent volume required to produce significant solute break-
through in both cases.

The effect of bead or filament radius on the breakthrough curves is
shown in Figs. 6 and 7, respectively. In either case the larger the radius
the smaller the total area of the water-resin interface and the slower the
diffusion into the resin, which results in decreasing effluent volumes
required to produce breakthrough as radius increases. Increasing the
influent flow rate causes column performance to deteriorate, as shown
in Figs. 8 (bead) and 9 (filament). The rate of diffusional mass transfer
into the resin becomes less and less able to keep up with the rate of trans-
port of solute through the column by the moving liquid as the flow rate
increases.

24}x107* mg/ml

Ceffluent

0 160 mi 320
Veffiuent

F1G. 4. Breakthrough curves for bead-packed columns. Effect of solute-resin

diffusion constant. r, = 0.05, r. = 1.0, I, = 20cm; Q = 1.0 mL/sec; Cpax =

10, ¢°=10"?mg/mL; D=2 x 107¢ (1), 4 x 10-¢ (2), 6 x 10~° (3) cm?/
sec; V,=0.74, M = 30, K = 20.
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10} x10”*mg/mi

o] 100 200 ml 300
Veffluent

Fi1G. 5. Breakthrough curves for filament-packed columns. Effect of solute—

resin diffusion constant. r, = 0.04, r. = 1.0, I, =20 cm; Q = 1.0 mL/sec;

Cmax = 1.0, ¢ =10"2mg/mL; D=2 x 1079 (1), 4 x 107¢ (2), 6 x 10°¢
(3) cm?/sec; V, = 0.50, M = 30, K = 20.

8X10"* mg/m!

Ceffluenf
KN
L

]
(o] 260mi 520
Veffluenl

Fi1G. 6. Breakthrough curves for bead-packed columns. Effect of bead radius.

ry = 0.05 (1), 0.04 (2), 0.035 (3), r. = 1.0, I. =20cm; Q = 1.0 mL/sec;

Cmax = 1.0, ¢ = 1072 mg/mL; D = 6 x 10~¢ cm?/sec; V, = 0.74, M = 30,
K = 20,
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15-X10"*mg/ml

lo L
£ 3
et

") 100 200 ml 300

Veffluent

F1G. 7. Breakthrough curves for filament-packed columns. Effect of filament

radius. r, = 0.05 (1), 0.04 (2),0.035 (3),r, = 1.0,/. = 20 cm; Q = 1.0 mL/sec;

Cmax = 1.0, ¢° = 1072 mg/mL; D = 6.0 x 10~ cm?/sec; V, = 0.50, M = 30,
K =20,

241107 mg/m|

Ceffluent

o 240mi 480
Veftiuent

FiG. 8. Breakthrough curves for bead-packed columns. Effect of influent flow

rate. r, = 0.05, r. =10, I, =20cm; Q = 2.0(1), 1.5(2), 1.0 (3) mL/sec;

Cmax = 1.0, ¢® = 1072 mg/mL; D = 6 x 10~%cm?/sec; V, = 0.74, M = 20,
K = 20.
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15 X10™* mg/ml |
1o}
E
H
55f
o
0 100 200ml 300

Veffiuent

Fi1G. 9. Breakthrough curves for filament-packed columns. Effect of influent

flow rate. r; = 0.035,r, = 1.0,/. = 20 cm; @ = 2.0 (1), 1.5 (2), 1.0 (3) mL/sec;

Cmax = 1.0, ¢ = 102 mg/mL; D = 6.0 X 10~ %cm?/sec; V, = 0.50, M = 30,
K = 20.

1.6}-X10"* mg/ml
€
[
=
£ osf
[
©
L 1 ] S |
o) 240ml 480

Veffluent

FiG. 10. Breakthrough curves for bead-packed columns. Effect of M, the

number of slabs into which the column is partitioned (theoretical transfer

units). 7, == 0.05, r. = 1.0, I, =20cm; Q = 1.0mL/sec; Cpax = 1.0, ¢® =

10-2 mg/mL; D = 6 x 10-%cm?/sec; V, = 0.74, M = 10 (1), 20 (2), 30 (3),
K = 20.
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15 X10™* mg/mi
]
io} 2
£
g 3
&l
) 100 200ml 300

Veffluent

FiG. 11. Breakthrough curves for filament-packed columns. Effect of M, the
number of slabs into which the column is partitioned (theoretical transfer
units). r, = 0.035, r. = 1.0, I. = 20cm; Q = 1.0 mL/seC; Cmax = 1.0, ¢® =
10~2 mg/mL; D = 6 x 10~¢ cm?/sec; V, = 0.50, M = 10 (1), 20 (2), 30 (3),

K = 20.
I5rx10™* mg/ml
|
2

10k
b3
2

[o] 100 200 ml 300

Veffluent

FiG. 12. Breakthrough curves for filament-packed columns. Effect of volume

fraction resin. rp = 0.035, r. = 1.0, [, = 20 cm; Q = 1.0 mL/sec; cmax = 1.0,

¢® =102 mg/mL; D = 6.0 x 10~° cm?/sec; V, = 0.30 (1), 0.40 (2), 0.50 (3),
M = 30, K = 20.
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Figures 10 and 11 show the effect of varying the number of horizontal
slabs into which the column is partitioned. The mathematical model
assumes complete mixing of the liquid in each slab, so decreasing the
number of slabs permits one to model an increase in axial dispersion of
the liquid in the column. Axial dispersion can also be handled by including
a finite difference approximation to a second derivative term in Eq. (32)
or Eq. (65). This approach, however, uses more computer time than
decreasing the number of slabs used to represent the column, and it leads
to mathematical instability of the algorithm if the axial dispersion constant
is large.

In columns packed with equal size spherical beads, the volume fraction
resin is fixed in the vicinity of 0.74 unless the column is being operated
in the fluidized bed mode. In filament-packed columns the volume fraction
can in principle vary from 0 to 0.907. In Fig. 12 we see the effect of varying
the volume fraction in filament-packed columns. The expected increase
in effluent volume to breakthrough with increasing volume fraction resin
is seen to occur.

We conclude that the behavior of macroreticular resin columns modeled
in the way outlined here is certainly in agreement with one’s qualitative
expectations based on physical intuition, and we would anticipate little
difficulty selecting model parameters to match experimental data. This
approach is well adapted to modeling the effects of influents having time-
dependent flow rates and compositions, so that the response of the system
to pulse shock loadings can easily be studied. We note that columns
packed with spheres absorb solute more rapidly than columns packed
with the same volume of filaments of the same diameter—hardly surpris-
ing since the water—resin interfacial area of the sphere-packed column is
509 larger than that of the filament-packed column. However, if these
resins could be prepared in thin filaments, one could obtain columns
having short detention times which would not have the large hydraulic
head losses bound to occur if spheres of similar diameter were used.
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